SOLID-STATE DETECTORS OF OPTICAL SIGNALS AND RADIATION. PART 2.1. BASIC CHARACTERISTICS AND FIGURES OF MERIT
Abstract and keywords
Abstract (English):
The second part of the review of solid-state detectors considers the main photoreception characteristics of photodetectors and generalized indicators of their detection quality, as well as the competitiveness of different types of detectors based on these indicators. Since in all relevant applied problems the detected signal is represented by a random number of optical photons or high-energy particles, the review emphasizes the relationship of these characteristics with the probabilistic description of random processes of signal formation and detection noise. The main attention is paid to avalanche photodiodes and silicon photomultipliers, which are the most sensitive and therefore the most popular solid-state detectors of low-photon optical signals and radiation.

Keywords:
photodiode, avalanche photodiode, APD, silicon photomultiplier, SiPM, energy resolution, time resolution, quantum efficiency
Text
Text (PDF): Read Download
References

1. ANSI/IEEE, IEEE Standard Test Procedures for Photomultipliers for Scintillation Counting and Glossary for Scintillation Counting field (ANSI/IEEE Std. 398 - 1972 Rev. 2006), 1972.

2. International Electrotechnical Commission (IEC), International Standard: Medical electrical equipment – Characteristics of digital X-ray imaging devices – Determination of the detective quantum efficiency (IEC 62220-1-3), 2008.

3. European Telecommunications Standards Institute, Quantum Key Distribution (QKD); Component characterization: characterizing optical components for QKD systems (ETSI GS QKD 011), ETSI, 2016.

4. Gasanov A.G., Golovin V.M., Sadygov Z.Ya., Yusipov N.Yu. Lavinnyy fotopriemnik na osnove struktur Metall – Rezisitivnyy sloy – Poluprovodnik, Pis'ma v ZhTF. 1988. no. 14, pp. 706-709.

5. D.A. Shushakov, V.E. Shubin, «New solid state photomultiplier», in: M. Razeghi, Y.-S. Park, G.L. Witt (Eds.), SPIE Optoelectron. Integr. Circuit Mater. Physics, Devices, SPIE, 1995: p. 544. doihttps://doi.org/10.1117/12.206900.

6. G. Bondarenko, B. Dolgoshein, V. Golovin, A. Ilyin, R. Klanner, E. Popova, «Limited Geiger-mode silicon photodiode with very high gain», Nucl. Phys., B - Proc. Suppl., 1998, no. 61, pp. 347-352. Doi:https://doi.org/10.1016/S0920-5632(97)00585-9.

7. P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, others, «An advanced study of silicon photomultiplier», in: ICFA Instrum.Bull., 2001: pp. 28-41. http://inspirehep.net/ record/572187?ln=en (accessed December 10, 2014).

8. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, S. Smirnov, «Silicon photomultiplier and its possible applications», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, no. 504, pp. 48-52, 2003. Doi: 10.1016/ S0168-9002(03)00749-6.

9. Z. Sadygov, A. Olshevski, I. Chirikov, I. Zheleznykh, A. Novikov, «Three advanced designs of micropixel avalanche photodiodes: Their present status, maximum possibilities and limitations», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 567, pp. 70-73, 2006. Doi:https://doi.org/10.1016/j.nima.2006.05.215.

10. D. McNally, V. Golovin, «Review of solid state photomultiplier developments by CPTA and photonique SA», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 610, pp. 150-153., 2009. Doi:https://doi.org/10.1016/j.nima.2009.05.140.

11. P. Finocchiaro, A. Pappalardo, L. Cosentino, M. Belluso, S. Billotta, G. Bonanno, S. Di Mauro, «Features of Silicon Photo Multipliers: Precision Measurements of Noise, Cross-Talk, Afterpulsing, Detection Efficiency», IEEE Trans. Nucl. Sci., no. 56, pp. 1033-1041, 2009. Doi:https://doi.org/10.1109/TNS.2009. 2014308.

12. S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, C. Sitarsky, «Probabilistic characterization of Solid State Photomultipliers based on transit time histograms», in: IEEE Nucl. Sci. Symp. Conf. Rec., pp. 174-178, 2010. Doi:https://doi.org/10.1109/NSSMIC.2010.5873739.

13. C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, N. Zorzi, «Development of an automatic procedure for the characterization of silicon photomultipliers», in: 2012 IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec., pp. 428-432, 2012.

14. S. Vinogradov, «Perfomance of Silicon Photomultipliers in photon number and time resolution», in: Proc. Int. Conf. New Photo-Detectors – PoS(PhotoDet2015), Sissa Medialab, Trieste, Italy, IT, 2016: p. 002. Doi:https://doi.org/10.22323/1.252.0002.

15. S. Vinogradov, «Precise metrology of SiPM: Measurement and reconstruction of time distributions of single photon detections and correlated events», in: 2016 IEEE Nucl. Sci. Symp. Med. Imaging Conf. Room-Temperature Semicond. Detect. Work., IEEE, pp. 1-4, 2016. Doi:https://doi.org/10.1109/NSSMIC.2016. 8069965.

16. F. Acerbi, S. Gundacker, «Understanding and simulating SiPMs», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 926, pp. 16-35, 2019. Doi:https://doi.org/10.1016/j. nima.2018.11.118.

17. C. Piemonte, A. Gola, «Overview on the main parameters and technology of modern Silicon Photomultipliers», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 926, pp. 2-15, 2019. Doi:https://doi.org/10.1016/j.nima.2018.11.119.

18. R. Klanner, «Characterisation of SiPMs», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 926, pp. 36-56, 2019. Doi:https://doi.org/10.1016/j.nima.2018.11.083.

19. The international Conference on the Advancement of Silicon Photomultipliers (ICASiPM), Schwetzingen, Germany, 2018. URL: https://indico.gsi.de/event/6990/ (data obrascheniya: 14.03.2025).

20. H.H. Tan, «Statistical Model of the Photomultiplier Gain Process With Applications To Optical Pulse Detection.», Int. Telemetering Conf. vol. 18, pp. 115-122, 1982.

21. R.J. McIntyre, «The distribution of gains in uniformly multiplying avalanche photodiodes: Theory», IEEE Trans. Electron Devices, vol. 19, pp. 703-713, 1972. Doi:https://doi.org/10.1109/T-ED.1972.17485.

22. W. Becker, «Advanced time-correlated single photon counting techniques for spectroscopy and imaging in biomedical systems», Proc. SPIE, 5340, pp. 104-112, 2004. Doi:https://doi.org/10.1117/12.529143.

23. S. Vinogradov, T. Vinogradova, L. Futlik, E. Levin, E. Shelegeda, V. Shubin, D. Shushakov, C. Sitarsky, «Characterization of single photon detection in solid state photomultipliers using multi-photon transit time histograms», J. Instrum., no. 6, P02013-P02013, 2011. Doi:https://doi.org/10.1088/1748- 0221/6/02/P02013.

24. J. Rosado, S. Hidalgo, «Characterization and modeling of crosstalk and afterpulsing in Hamamatsu silicon photomultipliers», J. Instrum., vol. 10, P10031–P10031, 2015. Doi:https://doi.org/10.1088/1748-0221/10/10/ P10031.

25. A.C. Giudice, M. Ghioni, S. Cova, F. Zappa, «A process and deep level evaluation tool: afterpulsing in avalanche junctions», in: Electr. Perform. Electr. Packag. (IEEE Cat. No. 03TH8710), IEEE, pp. 347- 350, 2003. Doi:https://doi.org/10.1109/ESSDERC.2003.1256885.

26. L. Campbell, «Afterpulse measurement and correction», Rev. Sci. Instrum., vol. 63, 5794, 1992. Doi:https://doi.org/10.1063/1.1143365.

27. S. Vinogradov, «Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 695, pp. 247-251, 2012. Doi:https://doi.org/10.1016/j.nima.2011.11.086.

28. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, S. Cova, «Optical crosstalk in single photon avalanche diode arrays: a new complete model.», Opt. Express., vol. 16, pp. 8381–94, 2008. Doi:https://doi.org/10.1364/oe.16.008381.

29. Vinogradov S.L., Vinogradova T.R., Shubin V.E., Shushakov D.A. Veroyatnostnoe raspredelenie i shum-faktor signalov tverdotel'nyh fotoelektronnyh umnozhiteley s uchetom processov krosstolka//Kratkie Soobscheniya Po Fizike Fizicheskogo Instituta Im. P.N. Lebedeva Rossiyskoy Akademii Nauk. 2009. C. 3-13.

30. C. Dietzinger, P. Iskra, T. Ganka, T. Eggert, L. Höllt, A. Pahlke, N. Miyakawa, M. Fraczek, J. Knobloch, F. Wiest, W. Hansch, R. Fojt, «Reduction of optical crosstalk in silicon photomultipliers», Biosensing Nanomedicine, vol. 8460, 84601L, 2012. Doi:https://doi.org/10.1117/12.930473.

31. M.V. Nemallapudi, S. Gundacker, G. Borghi, S. Gundacker, R. Martinez, S. Merzi, S.E. Brunner, A. Gola, A. Inglese, A. Mazzi, G. Paternoster, M. Penna, C. Piemonte, M. Ruzzarin, «NUV-HD SiPMs with metal-filled trenches», J. Instrum., no. 18, 2023. Doi:https://doi.org/10.1088/1748-0221/18/05/P05040.

32. Y. Guan, N. Anfimov, G. Cao, Z. Xie, Q. Dai, D. Fedoseev, K. Kuznetsova, A. Rybnikov, A. Selyunin, A. Sotnikov, «Study of Silicon Photomultiplier External Cross-Talk», 2023. http://arxiv. org/abs/2312.12901 (data obrascheniya: 14.03.2025).

33. S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, K. Sitarsky, «Probability distribution and noise factor of solid state photomultiplier signals with cross-talk and afterpulsing», in: 2009 IEEE Nucl. Sci. Symp. Conf. Rec., IEEE, pp. 1496-1500, 2009. Doi:https://doi.org/10.1109/NSSMIC.2009.5402300.

34. A. Stoykov, Y. Musienko, A. Kuznetsov, S. Reucroft, J. Swain, «On the limited amplitude resolution of multipixel Geiger-mode APDs», J. Instrum., no. 2, P06005-P06005, 2007. Doi:https://doi.org/10.1088/1748 - 0221/2/06/P06005.

35. S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, C. Sitarsky, K. Sitarsky, C. Sitarsky, «Efficiency of Solid State Photomultipliers in Photon Number Resolution», IEEE Trans. Nucl. Sci., vol. 58, pp. 9-16, 2011. Doi:https://doi.org/10.1109/TNS.2010.2096474.

36. S. Vinogradov, «Probabilistic analysis of solid state photomultiplier performance», in: Adv. Phot. Count. Tech. VI, pp. 83750S-83750S–9, 2012. Doi:https://doi.org/10.1117/12.919971.

Login or Create
* Forgot password?