Russian Federation
The first part of the review presents the history of the development of solid-state detectors and the features of their designs. The main attention is paid to avalanche photodiodes and silicon photomultipliers, the most sensitive and therefore the most demanded solid-state detectors of low-photon optical signals and radiation
photoelectric effect, photodiode, avalanche photodiode, APD, Geiger-mode APD, single-photon APD, silicon photomultiplier, SiPM
1. W.G. Adams, R.E. Day, «The action of light on selenium», Proc. R. Soc. London, no. 25, pp. 113-117, 1877. doi:https://doi.org/10.1098/rspl.1876.0024.
2. B.K. Lubsandorzhiev, «On the history of photomultiplier tube invention», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 567, pp. 236–238, 2006. doi:https://doi.org/10.1016/j.nima.2006.05.221.
3. B.K. Lubsandorzhiev, «Evolution of ideas in photon detection», Phys. Part. Nucl., vol. 47, pp. 957–967, 2016. doi:https://doi.org/10.1134/S1063779616060150.
4. E.M.D. Fisher, «Principles and Early Historical Development of Silicon Avalanche and Geiger-Mode Photodiodes», in: Phot. Count. - Fundam. Appl.: InTech, p. 37, 2018. doi:https://doi.org/10.5772/intechopen.72148.
5. D. Renker, «Geiger-mode avalanche photodiodes, history, properties and problems», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 567, pp. 48–56, 2006. doi:https://doi.org/10.1016/j.nima.2006.05.060.
6. V.E. Shubin, D.A. Shushakov, «Photodetectors Avalanche», in: Encycl. Opt. Photonic Eng., Second Ed., CRC Press, pp. 1–22, 2015. doi:https://doi.org/10.1081/E-EOE2-120047097.
7. Sadygov Z.Ya., Fizika tverdotel'nyh fotoelektronnyh umnozhiteley, OIYaI, Dubna, 2023. URL: http://www1. jinr.ru/Books/Sadygov.pdf. (data obrascheniya: 14.12.2024).
8. J. Nishizawa, P-I-N Photo-Diode, Japan Patent JP1955-8969A, 1952.
9. R.H. Haitz, A. Goetzberger, R.M. Scarlett, W. Shockley, «Avalanche Effects in Silicon p-n Junctions. I. Localized Photomultiplication Studies on Microplasmas», J. Appl. Phys., vol. 34, pp. 1581–1590, 1963. doi:https://doi.org/10.1063/1.1702639.
10. A. Goetzberger, B. McDonald, R.H. Haitz, R.M. Scarlett, «Avalanche Effects in Silicon p-n Junctions. II. Structurally Perfect Junctions», J. Appl. Phys., vol. 34, pp. 1591–1600, 1963. doi:https://doi.org/10.1063/1.1702640.
11. R.J. McIntyre, «The distribution of gains in uniformly multiplying avalanche photodiodes: Theory», IEEE Trans. Electron Devices, vol. 19, pp. 703–713, 1972. doi:https://doi.org/10.1109/T-ED.1972.17485.
12. J. Conradi, «The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental», IEEE Trans. Electron Devices, vol. 19, pp. 713–718, 1972. doi:https://doi.org/10.1109/T-ED.1972.17486.
13. P.P. Webb, R.J. McIntyre, J. Conradi, «Properties of avalanche photodiodes», RCA Rev. 35, pp. 234–278, 1974.
14. H. Dautet, P. Deschamps, B. Dion at al, «Photon counting techniques with silicon avalanche photodiodes», Appl. Opt. vol. 32, pp. 38-94, 1993. doi:https://doi.org/10.1364/ao.32.003894.
15. M. Ghioni, A. Gulinatti, I. Rech et al, «Progress in Silicon Single-Photon Avalanche Diodes», IEEE J. Sel. Top. Quantum Electronics, vol. 13, pp. 852–862, 2007. doi:https://doi.org/10.1109/JSTQE.2007.902088.
16. N.A. Foss, S.A. Ward, «Large‐area metal‐oxide‐semiconductor avalanche photodiodes», J. Appl. Phys., vol. 44, pp. 728–731, 1973. doi:https://doi.org/10.1063/1.1662252.
17. Z. Sadygov, A. Sadigov, S. Khorev, «Silicon Photomultipliers: Status and Prospects», Phys. Part. Nucl. Lett., vol. 17, pp. 160–176, 2020. doi:https://doi.org/10.1134/S154747712002017X.
18. N.I. Gol’braikh, A.F. Plotnikov, V.E. Shubin, «Pulse avalanche photodetector based on a metal-insulator‑semiconductor structure», Sov. J. Quantum Electron., vol. 5, pp. 1435–1436, 1975. doi:https://doi.org/10.1070/QE1975v005n12ABEH012167.
19. A.B. Kravchenko, A.F. Plotnikov, V.E. Shubin, «Feasibility of construction of a pulsed avalanche photodetector based on an MIS structure with stable internal amplification», Sov. J. Quantum Electron., vol. 8, pp. 1086–1089, 1978. doi:https://doi.org/10.1070/QE1978v008n09ABEH010725.
20. N.G. Basov, A.B. Kravchenko, A.F. Plotnikov, V.E. Shubin, «Self-stabilized avalanche process in a metal-dielectricsemiconductor (MDS) structure. Avalanche MDS photodetectors», Uspekhi Fiz. Nauk., vol. 134, pp. 748-750, 1981. doi:https://doi.org/10.3367/UFNr.0134.198108l.0748.
21. A.B. Kravchenko, A.F. Plotnikov, Y.M. Popov, V.E. Shubin, «Detection of light with an MIS structure operating under avalanche multiplication conditions», Sov. J. Quantum Electron. vol. 11, pp. 473–477, 1981. doi: 10.1070/ QE1981v011n04ABEH006850.
22. S. Bogdanov, V. Shubin, D. Shushakov, «The influence of electric field nonstationarity on a process of unit carrier multiplication», KSF. vol. 58, pp. 3–10, 1994.
23. D.A. Shushakov, V.E. Shubin, «New solid state photomultiplier» in: M. Razeghi, Y.-S. Park, G.L. Witt (Eds.), SPIE Optoelectron. Integr. Circuit Mater. Physics, Devices, SPIE, p. 544, 1995. doi:https://doi.org/10.1117/12.206900.
24. D.A. Shushakov, V.E. Shubin, «New avalanche device with an ability of few-photon light pulse detection in analog mode», in: G.S. Mecherle (Ed.), Free. Laser Commun. Technol. VIII, SPIE, pp. 173–183, 1996. doi:https://doi.org/10.1117/12.238418.
25. G. Szecesnyi-Nagy, «The AvalanchPhotodiode – A Promising Low Light Level Detector for Astronomical Photometry», Int. Astron. Union Colloq., vol. 136, pp. 160–168, 1993. doi:https://doi.org/10.1017/S025292110000751X.
26. D. Renker, E. Lorenz, «Advances in solid state photon detectors», J. Instrum., vol. 4, pp. 04004. doi:https://doi.org/10.1088/1748-0221/4/04/P04004.
27. A. Gasanov, V. Golovin, Z. Sadygov, N. Yusipov, «An avalanche detector on the basis of metal-resistive layer-semiconductor», Sov. Tech. Phys. Lett. vol. 14, p. 313, 1988. URL: https://journals.ioffe.ru/articles/ viewPDF/31222. (data obrascheniya: 14.12.2024).
28. A. Gasanov, V. Golovin, Z. Sadygov, N. Yusipov, «Effect of local inhomogeneities in a semiconductor substrate on the characteristics of avalanche photodetectors», Sov. Tech. Phys. Lett. vol. 16, p. 14. URL: https://journals.ioffe. ru/articles/25162 (data obrascheniya: 14.12.2024).
29. Z.Y. Sadyigov, A.G. Gasanov, N.Y. Yusipov et al, «Investigation of the possibility of creating a multichannel photodetector based on the avalanche MRS-structure», in: A.L. Mikaelian (Ed.), SPIE Proc. Opt. Mem. Neural Networks, pp. 158–168, 1991. doi:https://doi.org/10.1117/12.50424.
30. Z.Y. Sadygov, I.M. Zheleznykh, N.A. Malakhov et al, «Avalanche semiconductor radiation detectors» in: Third Eur. Conf. Radiat. Its Eff. Components Syst., IEEE, pp. 460–464, 1996. doi:https://doi.org/10.1109/RADECS.1995.509820.
31. Z. Sadygov, A. Olshevski, I. Chirikov et al, «Three advanced designs of micro-pixel avalanche photodiodes: Their present status, maximum possibilities and limitations», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 567, pp. 70–73, 2006. doi:https://doi.org/10.1016/j.nima.2006.05.215.
32. A.V. Akindinov, A.N. Martemianov, P.A. Polozov et al, «New results on MRS APDs», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 387, pp. 231–234, 1997. doi:https://doi.org/10.1016/S0168- 9002(96)01201-6.
33. G. Bondarenko, B. Dolgoshein, V. Golovin et al, «Limited Geiger-mode silicon photodiode with very high gain», Nucl. Phys. B – Proc. Suppl., vol. 61, pp. 347–352, 1998. doi:https://doi.org/10.1016/S0920-5632(97)00585-9.
34. A. Akindinov, G. Bondarenko, V. Golovin et al, «Scintillation counter with MRS APD light readou», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 539, pp. 172–176, 2005. doi:https://doi.org/10.1016/j.nima.2004.10.026.
35. P. Buzhan, B. Dolgoshein, A. Ilyin et al, «An advanced study of silicon photomultiplier», in: ICFA Instrum.Bull., 2001, pp. 28–41. URL: http://inspirehep.net/record/572187?ln=en (accessed December 10, 2014) (data obrascheniya: 14.12.2024).
36. P. Buzhan, B. Dolgoshein, L. Filatov et al, «Silicon photomultiplier and its possible applications», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 504, pp. 48–52, 2003. doi:https://doi.org/10.1016/S0168- 9002(03)00749-6.
37. V. Andreev, V. Balagura, B. Bobchenko et al, «A high-granularity scintillator calorimeter readout with silicon photomultipliers», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 540, pp. 368–380, 2005. doi:https://doi.org/10.1016/j.nima.2004.12.002.
38. R. Mirzoyan, P. Buzhan, B. Dolgoshein et al, «SiPM: on the Way at Becoming an Ideal Low Light Level Sensor» in: Talk given IEEE Nucl. Sci. Symp. Med. Imaging Conf., Knoxville, USA, Knoxville, USA, 2010.
39. D. McNally, V. Golovin, «Review of solid state photomultiplier developments by CPTA and photonique SA», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 610, pp. 150–153, 2009. doi:https://doi.org/10.1016/j.nima.2009.05.140.
40. K. Linga, E. Godik, J. Krutov et al, «Novel sensor for ultrasensitive and single-molecule detection», in: J. Enderlein, Z.K. Gryczynski (Eds.), Prog. Biomed. Opt. Imaging – Proc. SPIE, p. 60920X, 2006. doi:https://doi.org/10.1117/12.647150.
41. K. Linga, E. Godik, J. Krutov et al, «Solid state photomultiplier: noise parameters of photodetectors with internal discrete amplification» in: M.J. Cohen, E.L. Dereniak (Eds.), Proc. SPIE, p. 61190K, 2006. doi:https://doi.org/10.1117/12.648755.
42. E. Levin, E. Shelegeda, V.E. Shubin et al, «Advances in the development of solid state photomultipliers for medical maging» in: J. Hsieh, E. Samei (Eds.), Med. Imaging 2008 Phys. Med. Imaging, Pts 1-3, SPIE, p. 69130J, 2008. doi:https://doi.org/10.1117/12.772213.
43. H.N. Becker, W.H. Farr, D.Q. Zhu, «Radiation Response of Emerging High Gain, Low Noise Detectors», IEEE Trans. Nucl. Sci., vol. 54, pp. 1129–1135, 2007. doi:https://doi.org/10.1109/TNS.2007.894179.
44. M.A. Itzler, X. Jiang, B. Nyman, K. Slomkowski, «InP-based negative feedback avalanche diodes» in: M. Razeghi, R. Sudharsanan, G.J. Brown (Eds.), Proc. SPIE, p. 72221K, 2009. doi:https://doi.org/10.1117/12.814669.
45. Z. Sadygov, A.F. Zerrouk, A. Ariffin et al, «Performance of new Micro-pixel Avalanche Photodiodes from Zecotek Photonics», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 610, pp. 381–383, 2009. doi:https://doi.org/10.1016/j.nima.2009.05.123.
46. N. Anfimov, I. Chirikov-Zorin, A. Dovlatov et al, «Novel micropixel avalanche photodiodes (MAPD) with super high pixel density», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 628, pp. 369–371, 2011. doi:https://doi.org/10.1016/j.nima.2010.07.003.
47. Y. Musienko, A. Heering, «Studies of large dynamic range silicon photomultipliers for the CMS HCAL upgrade» in: New Dev. Photodetection (NDIP 11), Lyon, Fr. 4–8 July 2011, URL: http://ndip.in2p3.fr/ndip11/AGENDA/ AGENDA-by-DAY/Presentations/5Friday/PM/ID83_Musienko.pdf (data obrascheniya: 14.12.2024).
48. C. Piemonte, «A new Silicon Photomultiplier structure for blue light detection», Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. vol. 568, pp. 224–232, 2006. doi:https://doi.org/10.1016/j.nima.2006.07.018.
49. K. Yamamoto, K. Yamamura, K. Sato, «Development of Multi-Pixel Photon Counter (MPPC)», in: 2007 IEEE Nucl. Sci. Symp. Conf. Rec., IEEE, pp. 1511–1515, 2007. doi:https://doi.org/10.1109/NSSMIC.2007.4437286.
50. A.G. Stewart, V. Saveliev, S.J. Bellis et al, «Performance of 1 mm2 Silicon Photomultiplier», IEEE J. Quantum Electron. vol. 44, pp. 157–164, 2008. doi:https://doi.org/10.1109/JQE.2007.910940.
51. P. Finocchiaro, A. Pappalardo, L. Cosentino et al, «Characterization of a Novel 100-Channel Silicon Photomultiplier — Part I: Noise», IEEE Trans. Electron Devices., vol. 55, pp. 2757–2764, 2008. doi:https://doi.org/10.1109/TED.2008.2003996.
52. P. Finocchiaro, A. Pappalardo, L. Cosentino et al, «Characterization of a Novel 100-Channel Silicon Photomultiplier — Part II: Charge and Time», IEEE Trans. Electron Devices. vol. 55, pp. 2765–2773, 2008. doi:https://doi.org/10.1109/TED.2008. 2003235.
53. E.B. Johnson, C.J. Stapels, M. McClish et al, «New developments for CMOS SSPMs», 2008 IEEE Nucl. Sci. Symp. Conf. Rec. pp. 1516–1522, 2008. doi:https://doi.org/10.1109/NSSMIC.2008.4774701.
54. C. Dege, G. Prescher, T. Frach et al, «The digital Silicon Photomultiplier; A novel sensor for the detection of scintillation light» in: IEEE Nucl. Sci. Symp. Conf. Rec., IEEE, 2009: pp. 2383–2386, 2009. doi:https://doi.org/10.1109/NSSMIC. 2009.5402190.
55. P. Berard, M. Couture, P. Deschamps et al, «Performance measurement for a new low dark count UV-SiPM» in: 2011 IEEE Nucl. Sci. Symp. Conf. Rec., IEEE, 2011: pp. 544–547. doi:https://doi.org/10.1109/NSSMIC.2011.6154109.
56. C. Dietzinger, T.R. Ganka, W. Gebauer et al, «Silicon Photomultipliers with enhanced Blue-Light Sensitivity, Photodet», pp. 1–20, 2012. URL: https://indico.cern.ch/event/164917/session/0/contribution/18/material/ slides/0.pdf.