SCINTILLATORS FOR PRECISION Y-SPECTROMETERS
Abstract and keywords
Abstract (English):
The article analyzes the possibilities of using modern scintillators that provide a relative energy resolution along the y-line of 137Cs ER662keV ≤ 5%. Precision gamma spectrometers are relevant for use in technological processes of the nuclear industry, at nuclear power plants for monitoring the activity of air, waste water and adjacent areas, etc. Now 36 scintillation crystals are known that meet the above mentioned requirement. Of these, only 8 are produced by industry. Seven crystals are candidates for development in industrial production. The rest are hardly suitable for practical use due to the low light yield of LY (Cs2NaGdCl6:Ce, Tl2LiYCl6:Ce and TlCaCl3, for example). Eu-activated crystals have a high light output (LY = 60÷100 ph/MeV) and a low light output nonlinearity (NLY = 7÷10%) in a wide range of electron energies, which is extremely important for the spectrometry of “soft” y-radiation (ER662keV ≤ 10%). Due to the high self-absorption of light, these scintillators lose their advantages in the energy range Ey = 200÷3000 keV. The article shows that among the scintillators suitable for the simultaneous detection of gamma and neutron radiation, crystals containing 6Li are more preferable.

Keywords:
scintillators, photomultiplier, relative energy resolution, intrinsic resolution, light output, non-linearity of light output, constant emission, self-absorption
Text
Publication text (PDF): Read Download
References

1. S.E. Derenzo, Scintillation Properties Database. 2019. URL: http://scintillator.lbl.gov (data obrascheniya: 10.09.2021).

2. M. Grodzicka, M. Moszynski, T. Szczesniak, W. Czarnacki, M. Szawlowski, L. Swiderski, L. Kazmierczak, K. Grodzicki, «Characterization of CsI:Tl at a wide temperature range (-40 °C to +22 °C)», Nucl. Instrum. and Meth. in Physics Research, A 707, pp. 73-79, 2013.

3. M. Belousov, M. Gorbunov, O. Ignatyev, A. Krymov, A. Kupchinsky, S. Morozov, A. Pulin, «Perspectives of CsI:Tl Crystals in g-Spectrometers for Nuclear Plants», ANRY, no. 2 (105), pp. 24-40, 2021.

4. Z. Yan, T. Shalapska, E.D. Bourret. «Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu», Journal of Crystal. Growth, no. 435, pp. 42-45, 2016.

5. A.I. Rusakov, A.A. Shalaev, R.Yu. Shendrik, A.S. Myasnikova, A.K. Subanakov, «Growth and spectroscopy of BaBrI crystals activated by Eu2+ ions», AIP Conference Proceedings 2069, 020002, 8 p., 2019.

6. G. Bizarri, E.D. Bourret-Courchesne, Z. Yan, S.E. Derenzo. «Scintillation and Optical Properties of BaBrI:Eu2+ and CsBa2I5:Eu2+», IEEE Trans. on Nucl. Science, vol. 58, no. 6, pp. 3403-3410, 2011.

7. U. Shirwadkar, R. Hawrami, J. Glodo, E.V.D. van Loef, K.S. Shah. «Promising Alkaline Earth Halide Scintillators for Gamma-Ray Spectroscopy», IEEE Tran. on Nucl. Science, vol. 60, no. 2, pp. 1011-1015, 2013.

8. Z. Yan, G. Gundiah, G.A. Bizarri, E.C. Samulon, S.E. Derenzo, E.D. Bourret-Courchesne, «Eu2+activated BaCl2, BaBr2 and BaI2 scintillators revisited», Nucl. Instr. and Meth. in Physics Research, A 735, pp. 83-87, 2014.

9. E.D. Bourret-Courchesnen, G.A. Bizarri, R. Borade, G.Gundiah, E.C. Samulon, Z. Yan, S.E. Derenzo, «Crystal growth and characterization of alkali-earth halide scintillators», Journal of Crystal Growth, no. 352, pp. 78-83, 2012.

10. F.G.A. Quaratia, P. Dorenbos, J. van der Biezen et al., «Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers», Nucl. Instrum. and Meth. in Physics Research A 729, pp. 596-604, 2013.

11. K.S. Shah, J. Glodo, W. Higgins et al., «CeBr3 scintillators for gamma-ray spectroscopy», IEEE Trans. on Nuclear Science, vol. 52, no. 6, pp. 3157-3159, 2006.

12. P. Guss, M.E. Foster, B.M. Wong et al., «Results for aliovalent doping of CeBr3 with Ca2+». J. Appl. Phys., 115, 034908, pp. 1-10, 2014.

13. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, «Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient, and high-energy resolution scintillators», IEEE Trans. on Nuclear Science, vol. 48, no. 3, pp. 341-345, 2001.

14. A. Burger, E. Rowe, M. Groza, et al., «Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy», Appl. Phys. Lett., 107, 143505, pp. 1-3, 2015.

15. J. Glodo, E. van Loef, R. Hawrami, W.M. Higgins, A. Churilov, U. Shirwadkar, K.S. Shah, «Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators», IEEE Trans. on Nuclear Science, vol. 58, no. 1, pp. 333-338, 2011.

16. U. Shirwadkar, J. Glodo, E.V. van Loef, R. Hawrami, S. Mukhopadhyay, A. Churilov, W.M. Higgins, K.S. Shah, Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration», Nucl. Instrum. and Meth. in Physics Research, A 652, pp. 268-270, 2011.

17. E.C. Samulon, G. Gundiah, M. Gascón, I.V. Khodyuk, S.E. Derenzo, G.A. Bizarri, E.D. Bourret-Courchesne, «Luminescence and scintillation properties of Ce3+-activated Cs2NaGdCl6, Cs3GdCl6, Cs2NaGdBr6 and Cs3GdBr6», Journal of Luminescence, no. 153, pp. 64-72, 2014.

18. G. Gundiah, K. Brennan, Z. Yana, E.C. Samulon, G. Wub, G.A. Bizarri, S.E. Derenzo, E.D. Bourret-Courchesne, «Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6 and Cs3LaI6», Journal of Luminescence, no. 149, pp. 374-384, 2014.

19. E.D. Bourret-Courchesne, G. Bizarri, R. Borade, Z. Yan, S.M. Hanrahan, G. Gundiah, A. Chaudhry, A. Canning, S.E. Derenzo, «Eu2+-doped Ba2CsI5, a new high-performance scintillator», Nucl. Instrum. and Meth. in Physics Research, A 612, pp. 138-142, 2009.

20. M.S. Alekhin, D.A. Biner, K.W. Krämer, P. Dorenbos, «Optical and scintillation properties of CsBa2I5:Eu2+», Journal of Luminescence, no. 145, pp. 723-728, 2014.

21. L. Stand, M. Zhuravleva, B. Chakoumakos, J. Johnson, A. Lindsey, C.L. Melcher, «Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4», Journal of Luminescence, no. 169, pp. 301-307, 2016.

22. A.C. Lindsey, M. Zhuravleva, L. Stand, Y. Wu, C.L. Melcher, «Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator», Optical Materials, no. 48 , pp. 1-6, 2015.

23. L. Stand, M. Zhuravleva, H. Wei, C.L. Melcher, «Crystal growth and scintillation properties of potassium strontium bromide», Optical Materials, no. 46, p. 59-63, 2015.

24. L. Stand, M. Zhuravleva, A. Lindsey, C.L. Melcher, «Potassium Strontium Iodide: A New High Light Yield Scintillator with 2.4% Energy Resolution», Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 3 p., 2013.

25. J. Glodo, R. Farrell, E.V.D. van Loef, W.M. Higgins, K.S. Shah, «LaBr2:Pr3+ - A new red-emitting scintillator», 2005 IEEE Nuclear Science Symposium Conference Record, pp. 98-101.

26. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel, «Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators», Nucl. Instrum. and Meth. in Physics Research, A 486, pp. 254-258, 2002.

27. BrilLanceTM Scintillators Performance Summary, 11 p., 2009.

28. P.R. Menge, G. Gautier, A. Iltis, C. Rozsa, V. Solovyev, «Performance of large lanthanum bromide scintillators», Nucl. Instrum. and Meth.in Physics Research A, no. 579, p. 6-10, 2007.

29. M.S. Alekhin, J.T.M. de Haas, I.V. Khodyuk, K.W. Kramer, P.R. Menge, V. Ouspenski, P. Dorenbos, «Improvement of c-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ codoping», Applied Physics Letters, 102, 161915, 4 p., 2013.

30. High resolution LBC scintillators. URL: https://www.berkeleynucleonics.com → datasheets. Sayt Berkeley Nucleonics (data obrascheniya: 25.11.2021).

31. L. Soundara-Pandian, R. Hawrami, J. Glodo, E. Ariesanti, E.V. van Loef, K. Shah, «Lithium Alkaline Halides-Next Generation of Dual Mode Scintillators», IEEE Tran. on Nucl. Science, vol. 63, no. 2, pp. 490-496, 2016.

32. M.D. Birowosuto, P. Dorenbos, C.W.E. van Eijk. «High-light-output scintillator for photodiode readout: LuI3:Ce3+», Journal of Applied Physics, 99, 123520, 4 p., 2006.

33. I.V. Khodyuk, S.A. Messina, T.J. Hayden, E.D. Bourret, G.A. Bizarri. «Optimization of scintillation performance via a combinatorial multi-element co-doping strategy: Application to NaI:Tl». Journal of Applied Physics, 118, 084901, 6 p., 2015.

34. M.D. Birowosuto, Pieter Dorenbos, Johan T.M. de Haas, Carel W.E. van Eijk, K.W. Krämer and H.U. Gudel. IEEE Tran. on Nucl. Science, vol. 55, no. 3, p. 1152-1155, 2008.

35. P. Dorenbos, J.C. van’t Spijker, O.W.V. Frijns, C.W.E. van Eijk, K. Krgmer, H.U. Giidel, A. Ellens. «Scintillation properties of RbGd2Br7:Ce3+ crystals; fast, efficient, and high density scintillators», Nucl. Instr. and Meth. in Physics Research, B 132, pp.728-731, 1997.

36. E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N.J. Cherepy, S.A. Payne, B.W. Sturm, «A New Lanthanide Activator for Iodide Based Scintillators: Yb2+», IEEE Tran. on Nucl. Science, vol. 60, no. 2, pp. 1057-1060, 2013.

37. R. Hawrami, E. Ariesanti, H. Wei, J. Finkelstein, J. Glodo, K.S. Shah, «Tl2LaCl5:Ce, high performance scintillator for gamma-ray detectors», Nucl. Instr. and Meth. in Physics Research, A 869, pp. 107-109, 2017.

38. R. Hawrami, E. Ariesanti, L. Soundara-Pandian, J. Glodo, K.S. Shah. «Tl2LiYCl6:Ce: A new elpasolite scintillator», IEEE Tran. on Nucl. Science, vol. 63, no. 6, p. 2838-2841, 2016.

39. A. Khan, G. Rooh, H.J. Kim, H. Park, S. Kim. «Intrinsically activated TlCaCl3: A new halide scintillator for radiationdetection», Radiation Measurements, no. 107, pp. 115-118, 2017.

40. H.J. Kim, G. Rooh, A. Khan, H. Parka, S. Kim. «Scintillation performance of the TlSr2I5 (Eu2+) single crystal», Optical Materials, no. 82, p. 7-10, 2018.

41. Shendrik R.Yu. Metody eksperimental'noy fiziki kondensirovannogo sostoyaniya. Chast' 3. Vvedenie v fiziku scintillyatorov. Ch. 1. Uchebnoe posobie. Irkutsk: izd-vo Irkut. gos. un-ta, 2013. 110 s.

42. P.R. Beck, N.J. Cherepy, S.A. Payne et al., «Strontium iodide instrument development for gamma spectroscopy and radioisotope identification», Proc. of SPIE, vol. 9213. September, 9 p., 2014.

43. T. Tanaka, K. Hagiwara, E. Gazzola et al., «Gamma ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium», Prog. Theor. Exp. Phys., 043D02, 15 p., 2020.

44. R. Hawrami, A. Farsoni, H. Sabet, D. Szydel. Growth and Evaluation of Improved CsI:Tl and NaI:Tl Scintillators. URL: https://arxiv.org›physics (data obrascheniya: 15.12.2021).

Login or Create
* Forgot password?