PERSPECTIVES OF CSI:TL CRYSTALS IN G-SPECTROMETERS
Abstract and keywords
Abstract (English):
The article describes the problems of creating a scintillation spectrometer with a CsI:Tl crystal to replace spectrometers with NaI:Tl crystals which are widely used at nuclear power plants (NPPs) to monitor the activity of air, waste water and adjacent territories. The advantages of CsI:Tl-spectrometers are in the best energy resolution; much greater resistance to mechanical and electromagnetic influences due to the use of silicon photomultipliers (SiPM) instead of vacuum photomultiplier tubes (VPMT); much greater durability due to the very low hygroscopicity of the material. The strong mismatch between the emission spectrum of the crystal and the spectral sensitivity of the VPMT photocathodes, the relatively long decay time and the complex, multicomponent form of the light flash made spectrometers with CsI:Tl crystals not competitive. The paper describes the methods of constructing a spectrometer, which made it possible to realize the useful properties inherent in a crystal and to level its disadvantages. As a result of the cycle of research and development work, the Stark-02 intellectual detector has been designed and described. Typical relative energy resolution with crystals of volume 45 cm3 at an energy of 662 keV of the 137Cs source is better than 6.5% in the ambient temperature range Q = +10 ÷ +45 °C and not worse than 7.5% in the extended range Q = –25 ÷ +55 °C.

Keywords:
scintillator CsI:Tl, silicon photomultiplier, energy resolution, intrinsic resolution, slow flash components, pulse shaping, fast-action
References

1. M.P. Belousov, M.V. Gromyko, O.V. Ignatyev, «Scintillation g spectrometers for use at nuclear power plants (Review)», Instruments and Experimental Techniques, vol. 60, no. 1. pp. 5-24, 2017.

2. M. Grodzicka, M. Moszynski, T. Szczesniak, W. Czarnacki, M. Szawlowski, L. Swiderski, L. Kazmierczak, K. Grodzicki, «Characterization of CsI:Tl at a wide temperature range (-40 to +22 °C)», Nucl. Instrum. and Methods, vol. A707. pp. 73-79, 2013.

3. Ignat'ev O.V. Bystrodeystvuyuschie spektrometry s poluprovodnikovymi detektorami rentgenovskogo i gamma-izlucheniy: avtoref. dis. d-ra tehn. nauk: 01.04.01. S.-Peterburg, 2011. 40 s.

4. Akimov Yu.K. Fotonnye metody registracii izlucheniy. Dubna: OIYaI, 2014. 323 s.

5. V.P. Seminozhenko, B.V. Grinyov, V.V. Nekrasov, Yu.A. Borodenko, «Recent progress in the development of CsI(Tl) crystal-Si-photodiode spectrometric detection assemblies», Nucl. Instrum. and Methods, vol. A537. pp. 383-388, 2005.

6. Akimov Yu.K., Ignat'ev O.V., Kalinin A.I., Kushniruk V.F. Poluprovodnikovye detektory v eksperimental'noy fizike. M.: Energoatomizdat, 1989, 344 s.

7. C. Fiorini, A. Longoni, F. Perotti, «New detectors for y-ray specroscopy and imaging, based on scintillators coupled to silicon drift detectors», Nucl. Instrum. and Methods, vol. A454. pp. 241-246, 2000.

8. T. Ikagawa, J. Kataoka, Y. Yatsu, T. Saito, Y. Kuramoto, N. Kawai, M. Kokubun, T. Kamae, Y. Ishikawa, N. Kawabata, «Study of large area Hamamatsu avalanche photodiode in a g-ray scintillation detector», Nucl. Instrum. and Methods, vol. A538, pp. 640-650, 2005.

9. Belousov M.P., Gorbunov M.A., Dudin S.V., Ignat'ev O.V., Morozov S.G., Pulin A.A. Portativnyy scintillyacionnyy gamma-spektrometr Stark-01//Analitika i kontrol'. 2011. T. 15. N 4. S. 429-438.

10. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, S. Smirnov, «Silicon photomultiplier and its possible applications», Nucl. Instrum. and Meth. in Physics Research, vol. A504, pp. 48-52, 2003.

11. M. Grodzicka, M. Moszynski, T. Szczesniak, M. Szawlowski, D. Wolski, J. Baszak, «MPPC Array in the Readout of CsI:Tl, LSO:Ce:Ca, LaBr:Ce, and BGO Scintillators», IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 3294-3303, 2012.

12. Ignat'ev O.V. Sposob uvelicheniya bystrodeystviya spektrometrov ioniziruyuschih izlucheniy s poluprovodnikovymi i drugimi detektorami bez vnutrennego usileniya. Patent RF N 2392642. 2010.

13. F.S. Goulding, D.A. Landis, N.W. Madden, «Design philosophy for high-resolution rate and throughput spectroscopy systems», IEEE Trans. on Nucl. Sci., vol. NS-30, no. 1, pp. 301-310, 1983.

14. R.P. Sallen, E.L. Key, «A Practical Method of Designing RC Active Filters», IRE Trans., vol. 1, pp. 74-85, 1955.

15. P.W. Nicholson, Nuclear Electronics, J. Wiley & Sons, Inc., 1974.

16. Tihonov V.I. Statisticheskaya radiotehnika. M.: Radio i svyaz'. 1982. 624 c.

17. Ignat'ev O.V., Dudin S.V., Pulin A.D. Ustroystvo taymirovaniya spektrometricheskih impul'sov. Patent RF N 2098842. 1997.

18. G.P. Westphal. Method of and system for determining a spectrum of radiation characteristics with full counting-loss compensation. US Patent N 4,476,384. 1984.

19. J.D. Valentine, D.K. Wehe, G.F. Knoll, K.E. Moss, «Temperature dependence of CsI(Tl) absolute scintillation yield», IEEE Trans. Nucl. Sci., vol. 40, no. 4, pp. 1267-1274, 1993.

20. F.V. Finkel, I.A. Krainukovs, V.S. Litvinsky, V.V. Gostilo, «Performance stabilization of scintillation spectrometers for aerosol monitoring», Nuclear Technology and Radiation Protection, vol. 34, no.№1, pp. 72-78, 2019.

21. L.J. Meng, D. Ramsden, V.M. Chirkin, V.N. Potapov, O.P. Ivanov, S.M. Ignatov, «The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy», Nucl. Instrum. and Meth. in Physics Research, vol. A485, pp. 468-476.

22. F. Licciulli, I. Indiveri, C. Marzocca, «A Novel Technique for the Stabilization of SiPM Gain Against Temperature Variations», IEEE Trans. on Nucl. Sci., vol. 60, no. 2, pp. 606-611, 2013.

23. Ignat'ev O.V., Belousov M.P., Morozov S.G., Gromyko M.V. Sposob podavleniya lavinnogo shuma v spektrometrah s medlennymi scintillyatorami i kremnievymi fotoumnozhitelyami. Patent RF N 2593617. 2016.

Login or Create
* Forgot password?