ON THE GENESIS OF RADON ANOMALIES IN THE TECTONIC FAULT ZONES
Abstract and keywords
Abstract (English):
As a result of almost three-year observations conducted in the fault zone in the Beshtau magmatic massif area (Caucasian Mineral Waters), anomalous seasonal fluctuations in radon exhalation rate were registered. Seasonal fluctuations are characterized by highs in summer and lows in winter. Summer values reached 23800 mBq/(m2s), while in winter the radon exhalation rate decreased to 40 mBq/(m2s). Radon exhalation rate in the fault zone shows a clear direct correlation with air temperature. The rise of radon levels in spring and fall in autumn are timed to the moments when the temperature of the atmospheric air becomes, respectively, above and below the temperature of the rock massif. It is established that seasonal fluctuations of radon levels are caused by changes in the direction of convective radon transport in the fractured zones. The obtained data suggest that the formation of seasonal radon anomalies in the fault zones is due to the circulation of atmospheric air in permeable zones of the rock massif, which occurs due to the temperature difference between the massif and the atmosphere.

Keywords:
radon, radon exhalation rate, tectonic fault, radon seasonal variations, convective transport
References

1. G. Cinelli, T. Tollefsen, P. Bossew, V. Gruber, K. Bogucarskis, L. de Felice, M. de Cort. «Digital version of the European Atlas of natural radiation», J. Environ. Radioactiv, no. 196, pp. 240-252, 2019.

2. H. Friedmann, A. Baumgartner, M. Bernreiter, J. Graser, V. Gruber, F. Kabrt, H. Kaineder, F.J. Maringer, W. Ringer, C. Seidel, G. Wurm, «Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation», J. Environ. Radioactiv, no. 166(2), pp. 382-389, 2017.

3. F. Giustini, G. Ciotoli, A. Rinaldini, L. Ruggiero, M. Voltaggio, «Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy», Sci. Total Environ, no. 661, pp. 449-464, 2019.

4. V. Gruber, P.Bossew, M. de Cort, T. Tollefsen, «The European map of the geogenic radon potential», J. Radiol. Prot., no. 33, pp. 51-60, 2013.

5. Adushkin V.V., Spivak A.A. Fizicheskie polya v pripoverhnostnoy geofizike. M.: GEOS, 2014. 360 s.

6. Seminskiy K.Zh., Bobrov A.A. Pervye rezul'taty issledovaniy vremennyh variaciy emanacionnoy aktivnosti razlomov zapadnogo Pribaykal'ya//Geodinamika i tektonofizika. 2013. N 4(1). S. 1-12.

7. Seminskiy K.Zh., Bobrov A.A., Demberel S. Variacii ob'emnoy aktivnosti radona v razlomnyh zonah zemnoy kory: prostranstvennye osobennosti//Fizika Zemli. 2014. N 6. C. 80-85.

8. Rudakov V.P. Emanacionnyy monitoring geosred i processov. M.: Nauchnyy mir. 2009. 176 s.

9. L.C. Baubron, A. Rigo, J.P. Toutain, «Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France)», Earth Planet Sci. Lett. no. 196, pp. 69-81, 2002.

10. G. Ciotoli, S. Bigi, G.P. Cavinato, Radon distribution as shallow evidence of buried fault geometry in the Fucino plain (Central Italy). 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, 19-24 April 2015, Pescina, Fucino Basin, Italy. no. 6, pp. 79-82, 2015.

11. J.-P. Drolet, R. Martel, «Distance to fault as a proxy for radon gas concentration in dwellings». J. Environ. Radioactiv, no. 152, pp. 8-15, 2016.

12. P. Hernández, N. Perez, J. Salazar, M. Reimer, K. Notsu, H. Wakita, «Radon and helium in soil gases at Cañaadas caldera, Tenerife, Canary Islands, Spain», J. Volcanol. Geoth. Res. no. 131, pp. 59-76. 2004.

13. S. Inan, A. Kop, H. Cetin, F. Kulak, Z. Pabuccu, C. Seyis, S. Ergintav, O. Tan, R. Saatcilar, M. Nuri Bodur, «Seasonal variations in soil radon emanation: long-term continuous monitoring in light of seismicity», Nat Hazards, no. 62, pp. 575-591, 2012.

14. C.Y. King, «Radon emanation on San Andreas fault», Nature, no. 271, pp. 516-519, 1978.

15. C.Y. King, B.S. King, W.C. Evans, «Spatial radon anomalies on active faults in California». Appl. Geochem., no. 11, pp. 497-510, 1996.

16. V. Moreno, J. Bach, M. Zarroca, Ll. Font, C. Roque, R. Linares, «Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa», J. Environ. Radioactiv., no. 189, pp. 1-13, 2018.

17. C. Papastefanou, «Variation of radon flux along active fault zones in association with earthquake occurrence», Radiat. Meas., no. 45, pp. 943-951, 2010.

18. V. Walia, S.J. Lin, C.C. Fu, T.F. Yang, W.L. Hong, K.L. Wena, C.H. Chen, «Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Taiwan), Southern Taiwan», Appl. Geochem., no. 25, pp. 602-607, 2010.

19. V.I. Utkin, A.K. Yurkov, «Radon as a tracer of tectonic movements», Russ. Geol. Geophys., no. 51, pp. 220-227, 2010.

20. Novikov G.F. Radiometricheskaya razvedka. L.: Nedra, 1989. 407 s.

21. Parovik R.I., Shvecov B.M., Firstov P.P. Model' perenosa radona v rezhime superdiffuzii vo fraktal'noy srede. Doklady Adygeyskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk. 2008. T. 10. N 2. C. 79-85.

22. Shuleykin V.N., Reznichenko A.P., Puschina L.V. O svyazyah metana i vodoroda pochvennogo vozduha. Degazaciya Zemli: geofizika, geoflyuidy, neft', gaz i ih paragenezisy. Materialy Vseros. konf. M.: GEOC, 2008. C. 544-547.

23. Marennyy A.M., Capalov A.A., Miklyaev P.S., Petrova T.B. Zakonomernosti formirovaniya radonovogo polya v geologicheskoy srede. M.: Izdatel'stvo «Pero», 2016. 394 s.

24. Miklyaev P.S., Capalov A.A., Marennyy A.M., Lopatin M.N., Myasnikov A.A., Farafutdinov V.T., Petrova T.B. Kompleksnye monitoringovye issledovaniya formirovaniya radonovyh poley gruntovyh massivov. Ch.7. Rezul'taty monitoringa radonovogo polya v zone aktivnogo tektonicheskogo razloma v Baykal'skoy riftovoy zone//ANRI. 2016. N 3(86). S. 19-34.

25. Ll. Font, C. Baixeras, V. Moreno, J. Bach, «Soil radon levels across the Amer fault», Radiat. Meas., no. 43, pp. 319-323, 2008.

26. V. Moreno, J. Bach, Ll. Font, C. Baixeras, M. Zarroca, R. Linares, C. Roque, «Soil radon dynamics in the Amer fault zone: An example of very high seasonal variations». J. Environ. Radioactiv., no. 151, pp. 293-303, 2016.

27. F. Perrier, P. Richon, J.-C. Sabroux, «Temporal variations of radon concentration in the saturated soil of Alpine grassland: The role of groundwater flow». Sci. Total Environ., no. 407, pp. 2361-2371, 2009.

28. B. Zmazek, M. Zivcic, Vaupotic, M. Bidovec, M. Poljak, I. Kobal, «Soil radon monitoring in the Krsko Basin, Slovenia», Appl. Radiat. Isot., no. 56, pp. 649-657, 2002.

29. V.L. Lezhnin, M.V. Zhukovsky, E.V. Polzik, V.S. Kazantsev, O.A. Pakholkina, «A Multifactorial assessment of carcinogenic risks of radon for the population residing in a Russian radon hazard zone». Arch. Oncology, no. 19(1-2), pp. 3-8, 2011.

30. Miklyaev P.S., Petrova T.B., Marennyy A.M., Nefedov N.A., Ostapchuk T.V., Schitov D.V., Sidyakin P.A., Murzabekov M.A. Urovni ekshalyacii radona na zapadnom sklone gory Beshtau, Kavkazskie Mineral'nye Vody//Geoekologiya. 2018. N 5. S. 20-30.

31. Marennyy A.M., Miklyaev P.S., Penezev A.V., Capalov A.A., Klimshin A.V., Lopatin M.N., Marennyy M.A., Petrova T.B., Shkuropat D.I., Schelkunov A.V., Yankin A.S. Kompleksnye monitoringovye issledovaniya formirovaniya radonovyh poley gruntovyh massivov. Chast' 4 - rezul'taty monitoringa radona vnutri gruntovyh massivov//ANRI. 2015. N 3(82). S. 52-63.

32. A. Tsapalov, K. Kovler, P. Miklyaev, «Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface». J. Environ. Radioactiv. pp. 160, C. 28-35, 2016.

33. V.S. Yakovleva, «A theoretical method for estimating the characteristics of radon transport in homogeneous soil». Ann. Geophys., no. 48(1), pp. 195-198, 2005.

34. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation Sources and effects of ionizing radiation. In: Sources, vol. I. United Nations Publications, New York. 2000.

35. Golod V.M., Golod M.P. Mikroklimat gipsovyh pescher Pinezh'ya. V kn.: Peschery Pinego-Severodvinskoy karstovoy oblasti. L.: Nauka, 1974. S. 128-155.

36. Degtyarev A.P. Temperaturno-dinamicheskie tipy peschernyh vhodov//Voprosy geografii. 2018. N 147. S. 299-310.

37. Lukin V.S. Temperaturnye anomalii v pescherah Predural'ya i kriticheskiy analiz teoriy podzemnogo holoda//Peschery. 1965. N 5(6). S. 164-172.

38. V. Moreno, J. Bach, C. Baixeras, Ll. Font, «Characterization of blowholes as radon and thoron sources in the volcanic region of La Garrotxa». Spain. Radiat. Meas., no. 44, pp. 929-933. 2009.

39. A.V. Sundal, V. Valen, O. Soldal, T. Strand, «The influence of meteorological parameters on soil radon levels in permeable glacial sediments». Sci. Total Environ. no. 389, pp. 418-428, 2008.

40. P. Schmidt, «Proof of the Radiological Remediation Success at Former Uranium Mining and Milling Sites (WISMUT sites) in Germany». 4th Europ. IRPA Congr., June 23-27, Geneve, Switzerland. 2014.

41. Miklyaev P.S., Petrova T.B., Marennyy M.A., Marennyy A.M., Dorozhko A.L., Makeev V.M. Karta plotnosti potoka radona na territorii Moskvy//ANRI. 2012. N 3(70). S. 15-24.

42. Miklyaev P.S., Petrova T.B., Makeev V.M., Klimshin A.V. Anomalii plotnosti potoka radona na territorii Moskvy//Geoekologiya. 2017. N 5. S. 39-47.

Login or Create
* Forgot password?