Спектрометрический блок детектирования на основе кристалла LaBr₃(Ce) для исследования поля захватного гамма-излучения с энергиями от 4 МэВ до 9 МэВ

В работе описаны некоторые особенности кристалла LaBr₃(Ce) в сопоставлении с кристаллом NaI(Tl). Приведены аппаратурные спектры, полученные спектрометрическим блоком детектирования с кристаллом LaBr₃(Ce) в полях высокоэнергетического захватного гамма-излучения на установке поверочной нейтронного излучения УПН-АТ140 в энергетическом диапазоне от 4 до 9 МэВ. Показано, что энергетическую калибровку спектрометров на основе LaBr₂(Ce) можно осуществить в диапазоне от 30 кэВ до 10 МэВ, используя высокоэнергетическое захватное гамма-излучение на нейтронной установке и линии собственной радиоактивности лантана, не прибегая к источникам ОСГИ.

Ключевые слова:

захватное гамма-излучение, радионуклидный источник нейтронов, коллиматор тепловых нейтронов, мишень из титана, мишень из никеля, спектрометрический блок детектирования.

Д.И.Комар¹, В.А.Кожемякин¹, В.Д.Гузов¹, Ю.А.Верхуша¹, А.В.Антонов¹, С.А.Кутень²

¹ Научно-производственное унитарное предприятие «ATOMTEX», г. Минск, Республика Беларусь ² Институт ядерных проблем Белорусского Государственного Университета, г. Минск, Республика Беларусь

международном стандарте ISO 4037-1:2019 [1] описаны способы получения эталонных полей для калибровки дозиметрической аппаратуры с энергиями от 4 МэВ до 9 МэВ.

В лабораторной практике для получения гамма-излучения с энергиями от 4 МэВ до 9 МэВ удобно использовать радиационный захват тепловых нейтронов из-за низкой пороговой энергии реакции (тепловые энергии), больших сечений захвата тепловых нейтронов (единицы барн), широкой распространенности и доступности радионуклидных источников нейтронов, которые создают постоянное во времени нейтронное поле.

Коллиматор тепловых нейтронов установки поверочной нейтронного излучения УПН-АТ140 формирует пучок от радиону-

Титан		Никель		
Энергия фо- тонов, МэВ	Число фотонов	Энергия фо- тонов, МэВ	Число фотонов	
0,342	26,3	0,283	3,3	
1,381	69,1	0,465	13	
1,498	4,1	0,878	3,9	
1,586	8,9	6,581	2,3	
1,762	5,6	6,837	10,8	
4,882	5,2	7,537	4,5	
4,969	3,6	7,819	8,2	
6,418	30,1	8,121	3,1	
6,557	4,7	8,533	17	
6,761	24,2	8,999	37,7	

Табл.1.	Основные	выходы	фотоно	в на 100
захватов	нейтроно	в для т	итана и	никеля.

клидного источника со значительной составляющей нейтронов тепловых энергий [2,3]. Размещение мишени на выходе коллиматора позволит получить поле гамма-излучения с определенными энергиями. Для эталонного поля захватного гамма-излучения в диапазоне от 4 до 9 МэВ целесообразно использовать мишени из титана и никеля [4-7]. Титан и никель имеют наибольшие сечения захвата тепловых нейтронов в области до 7 МэВ и до 9 МэВ соответственно (табл.1).

Для инструментального обеспечения экспериментов в полях высокоэнергетического

Рис.1. Внешний вид спектрометрического блока детектирования на основе сцинтиллятора LaBr₃(Ce).

захватного гамма-излучения с энергиями от 4 МэВ до 9 МэВ в УП «АТОМТЕХ» был разработан спектрометрический блок детектирования на основе сцинтиллятора LaBr₃(Се) с размерами кристалла Ø38×38 мм. Блок имеет нелинейную характеристику преобразования «канал–энергия» с числом каналов АЦП, равным 1024 (рис.1).

Исследование спектрометрического блока детектирования на основе сцинтиллятора LaBr₃(Ce)

Детектор на основе кристалла LaBr₃(Ce) обладает высоким энергетическим разрешением ~3% по линии ¹³⁷Cs с энергией 0,662 МэВ

Рис.2. Фоновый спектр, набранный на спектрометре с кристаллом LaBr₃ (Ce), используемым в работе.

(что более чем в 2 раза лучше, чем можно получить при использовании сцинтилляторов NaI(Tl)), высокой эффективностью регистрации на энергиях свыше 6 МэВ, большим световыходом ~60000 фотонов / МэВ, малым временем высвечивания.

Единственным серьезным недостатком кристалла LaBr₃(Ce) является его собственный радиоактивный фон в диапазоне энергий от 0,6 МэВ до 3 МэВ. На рис.2 приведен фоновый спектр, набранный на спектрометре с кристаллом LaBr₃(Ce), используемым в работе.

Причина возникновения такого фона связана с присутствием в веществе сцинтиллятора радиоактивного изотопа лантана ¹³⁸La с периодом полураспада около 10¹¹ лет. В состав природного лантана входит 0,0902% этого изотопа. ¹³⁸La может распадаться по каналам электронного захвата или β-распада (с вероятностью 66,4% и 33,5% соответственно) с образованием дочерних ядер ¹³⁸Ba или ¹³⁸Ce в возбужденном состоянии.

При переходе в основное состояние ядра излучают фотоны с энергиями 1,436 МэВ для ¹³⁸Ва и 0,789 МэВ для ¹³⁸Се. Поглощение этих фотонов в кристалле бромида лантана создает дополнительный радиационный фон, который существенно понижает чувствительность к гамма-линиям с близкими энергиями и накладывает ограничения на низкофоновые измерения.

Тройной широкий пик от 450 до 570 канала формируется альфа-распадом изотопов в ряде актиния ²²⁷Ас (радиоактивное семейство ²³⁵U). Количество ²²⁷Ас в кристалле зависит от степени обработки. На долю ²²⁷Ас приходится около 35% всех фоновых импульсов детектора LaBr₃(Ce). В сцинтилляторах тяжелые заряженные частицы производят меньше световых фотонов на единицу энергии, чем гамма-излучение. Эта разница обусловлена внутренней плотностью ионизации в кристалле. Для LaBr₃(Ce) альфа-частицы с энергией от 5 до 7,5 MэB (²²⁷Th, ²²³Rc, ²¹¹Bi, ²¹⁹Rn) ложатся в энергетический интервал 2,85±0,16 МэВ гамма-излучения.

Изучение полей захватного гамма-излучения

Для получения спектрометрической информации о сформированных полях высокоэнергетического захватного гамма-излучения на установке поверочной нейтронного излучения

Рис.3. Спектр гамма-излучения, полученный с помощью блока детектирования с кристаллом LaBr₃(Ce) при использовании мишени из титана.

Рис.4. Спектр гамма-излучения, полученный с помощью блока детектирования с кристаллом LaBr₃(Ce) при использовании мишени из никеля.

УПН-АТ140 были проведены измерения спектров для мишени из титана (рис.3) и мишени из никеля (рис.4).

Поле захватного гамма-излучения формируется множеством линий от взаимодействия нейтронов не только с материалами мишени, но и с материалами нейтронной защиты коллиматора установки УПН-АТ140. Из-за высокой энергии гамма-квантов в аппаратурном спектре присутствуют значительные пики однократных и двукратных вылетов. В результате аппаратурные спектры получаются довольно сложными.

Для сравнения подобные измерения проводились с использованием спектрометрического блока детектирования на основе кристалла NaI(Tl) размерами Ø63×160 мм. Количество каналов нелинейного АЦП также составило 1024. Размер кристалла NaI(Tl) Ø63×160 мм был выбран исходя из требований высокой эффективности регистрации гамма-излучения в диапазоне энергий от 4 МэВ до 9 МэВ.

На рис.5 и рис.6 приводятся аппаратурные спектры, снятые со спектрометра NaI(Tl).

Из приведенных аппаратурных спектров видно, что спектрометр на основе кристалла

NaI(Tl) не разрешает многие пики захватного гамма-излучения.

Градуировка спектрометрического блока детектирования по линиям высокоэнергетического гамма-излучения в диапазоне от 30 кэВ до 10 МэВ

Для градуировки спектрометров в расширенном энергетическом диапазоне от 30 кэВ до 10 МэВ можно использовать спектры от образцовых изотопных источников ОСГИ и спектры, измеренные при облучении тепловыми нейтронами титановой и никелевой мишеней на нейтронной установке.

Аппаратурные спектры с известными энергетическими линиями получены с использованием набора долгоживущих образцовых спектрометрических гамма-источников ОСГИ (рис.7).

Для мишени из никеля линия 8,533 МэВ располагается рядом с линией однократного вылета от энергии 8,999 МэВ (8,488 МэВ). По этой причине энергетическую калибровку необходимо проводить по линиям мишеней с максимальной энергией (рис.4).

Рис.5. Спектр гамма-излучения, полученный с помощью блока детектирования с кристаллом NaI(Tl) при использовании мишени из титана.

Рис.6. Спектр гамма-излучения, полученный с помощью блока детектирования с кристаллом NaI(Tl) при использовании мишени из никеля.

Таким образом, для энергетической калибровки спектрометров свыше З МэВ можно использовать гамма-излучение 4,439 МэВ, сопутствующее реакции ⁹Ве(α,n)¹²С* в ²³⁸РиВе источнике нейтронов, линию захватного излучения 6,761 МэВ от титановой мишени и 8,999 МэВ от никелевой. Другие высокоэнергетические линии от мишеней использовать не представляется возможным из-за наложения с пиками однократного и двукратного вылетов от «старшей» линии.

Благодаря высокому разрешению детектора LaBr₃(Ce) для градуировки можно использовать линии 0,342 МэВ захвата на титане и 0,477 МэВ захвата на ¹⁰В (эта линия лежит рядом с 0,511 МэВ и на NaI(Tl) они были

Рис.7. Нормированные по времени аппаратурные спектры от различных источников типа ОСГИ, полученные на спектрометре с $LaBr_3(Ce)$ -детектором.

Рис.8. Характеристика «канал-энергия», построенная для спектрометра LaBr₃(Ce).

неразрешимы). Если использовать линии собственной радиоактивности природного лантана, то можно провести градуировку, лишь частично используя источники типа ОСГИ, либо вообще не прибегая к их использованию (рис.8). Таким образом, энергетическую калибровку спектрометров можно расширить до 10 МэВ, используя высокоэнергетическое гамма-излучение на нейтронной установке и линии собственной радиоактивности лантана, не прибегая к источникам ОСГИ.

/ НАУЧНЫЕ СТАТЬИ /

Также была проведена градуировка сцинтилляционного блока детектирования с кристаллом NaI(Tl) Ø63×160 мм. Оценка эффективности регистрации для обоих блоков детектирования во всем рассматриваемом энергетическом диапазоне показала, что несмотря на значительно меньшую высоту кристалла LaBr₃(Ce) его эффективность на энергиях выше 4 МэВ сопоставима с NaI(Tl). Анализ полученных аппаратурных спектров в поле захватного гамма-излучения от мишеней из титана и никеля показал, что в энергетическом диапазоне от 4 МэВ до 9 МэВ благодаря лучшему разрешению можно точнее выполнить калибровку энергетической шкалы блока детектирования с кристаллом LaBr₃(Ce).

Заключение

В ходе работы получены аппаратурные спектры полей захватного гамма-излучения с энергией от 4 МэВ до 9 МэВ спектрометрическим блоком детектирования на основе кристалла LaBr₃(Ce) Ø38×38 мм. Выполнена градуировка спектрометра по линиям захватного гамма-излучения и линиям собственной радиоактивности лантана без использования источников типа ОСГИ. При разработке алгоритмов (идентификации, стабилизации, расчета мощности дозы) для приборов на основе сцинтиллятора LaBr₃(Ce) необходимо учитывать его собственный фон.

Результаты работы будут в дальнейшем использованы при разработке блоков детектирования со сцинтилляционным детектором на основе кристалла LaBr₃(Ce), предназначенных для измерения энергетического распределения гамма-излучения и решения различных задач радиационного контроля, в частности, идентификации радионуклидного состава контролируемого объекта, измерения мощности амбиентного эквивалента дозы гамма-излучения в смешанных гамма-нейтронных полях в энергетическом диапазоне от 30 кэВ до 10 МэВ.

На основе данного экспериментального блока планируется разработка дозиметрического блока-компаратора с широким энергетическим диапазоном.

Литература

- International Standart «Radiological protection X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy». 15.01.2019. ISO 4037-1:2019.
- 2. Комар Д.И. Исследование опорных нейтронных полей установки поверочной нейтронного излучения УПН-АТ140//АНРИ. 2018. № 2(93). С. 29-39.
- Комар Д.И. Влияние рассеянного нейтронного излучения на метрологические характеристики поверочной установки нейтронного излучения УПН-АТ140 / / Приборы и методы измерений. 2017. Т. 8, 1. С. 23-31.
- 4. H.D. Choi, R.B. Firestone, R.B. Lindstorm. Database of promt gamma-rays from slow neutron capture for elemental analysis. Vienna: International atomic Energy Agency, 2006, 252 p.
- 5. Комар Д.И., Лукашевич Р.В., Гузов В.Д., Кутень С.А. Формирование поля захватного гамма-излучения до 10 МэВ для метрологического обеспечения приборов радиационной защиты / / Приборы и методы измерений. 2016. Т. 7, № 3. С. 296-304.

- 6. Комар Д.И., Лукашевич Р.В., Гузов В.Д., Кутень С.А. Источник захватного гамма-излучения с энергиями до 7 и до 10 МэВ на основе поверочной установки нейтронного излучения / /Известия национальной академии наук Беларуси. Серия физико-технических наук. 2017. № 2. С. 96-107.
- 7. Комар Д.И., Лукашевич Р.В., Гузов В.Д., Кутень С.А. Метрологическое обеспечение дозиметрии гамма-излучения с энергией до 10 МэВ для приборов радиационной защиты / / Приборы и методы измерений. 2017. Т. 8, № 3. С. 279-285.

LaBr₃(Ce) Crystal Spectrometric Detection Unit for Studying the Field of Capture Gamma Radiation with Energies from 4 MeV to 9 MeV

Komar Damian¹, Kozhemyakin Valery¹, Guzov Vladimir¹, Verhusha Yulia¹, Antonov Andrey¹, Kutsen Semen² ¹ Scientific Production Unitary Enterprise «ATOMTEX», Minsk, Belarus ² Research Institute for Nuclear Problems, Minsk, Belarus

Abstract. The paper describes some features of the LaBr₃(Ce) crystal in comparison with the NaI(Tl) crystal. The instrumental spectra obtained by the spectrometric detection unit with a LaBr₃(Ce) crystal in the fields of high-energy capture gamma radiation at neutron calibration facility AT-140 in the energy range from 4 MeV to 9 MeV are presented. It was shown that the energy calibration of LaBr₃(Ce) – based spectrometers can be performed in the range from 30 keV to 10 MeV using high-energy capture gamma radiation at AT-140 and the lanthanum intrinsic radioactivity line without resorting to OSGI sources.

Key words: neutron capture gamma-ray, radionuclide neutron source, thermal neutron collimator, titanium target, nickel target, spectrometric detector.

Д.И.Комар' (инж.), В.А.Кожемякин' (к.т.н., с.н.с., директор), В.Д.Гузов' (гл.метролог, нач.отд.), Ю.А.Верхуша' (инж.), А.В.Антонов' (инж., нач.лаб.), С.А.Кутень² (к.ф.-м.н., ст.н.с., зав.лаб.).

¹ Научно-производственное унитарное предприятие «АТОМТЕХ», г. Минск, Республика Беларусь

² Институт ядерных проблем Белорусского Государственного Университета, г. Минск, Республика Беларусь

Контакты: тел. +375-17-293-67-53; e-mail: komar_di@atomtex.com.